Power Sector Reform
India – The Long Road Ahead

Rahul Tongia
Department of Engineering & Public Policy/
School of Computer Science
Carnegie Mellon University
April 8, 2003

Supported by the PESD, Stanford Univ.
Outline

- Overview of the Indian power sector
 - Structure
 - Performance
 - Drivers for reform
- Reform steps
 - Mechanisms and modes
- Analysis
- Conclusions
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar Pradesh</td>
<td>174.5</td>
<td>517</td>
<td>57.4</td>
<td>9,765</td>
<td>195.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Bihar</td>
<td>109.8</td>
<td>217</td>
<td>47.5</td>
<td>6,328</td>
<td>152.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Orissa</td>
<td>36.7</td>
<td>103.4</td>
<td>63.6</td>
<td>9,162</td>
<td>312.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>75.7</td>
<td>267.9</td>
<td>61.1</td>
<td>14,715</td>
<td>375.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>96.8</td>
<td>299.6</td>
<td>77.3</td>
<td>23,398</td>
<td>593.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>62.1</td>
<td>517.8</td>
<td>73.5</td>
<td>19,141</td>
<td>497.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Karnataka</td>
<td>52.7</td>
<td>469.4</td>
<td>67.0</td>
<td>16,343</td>
<td>349.2</td>
<td>3.8</td>
</tr>
<tr>
<td>All-India</td>
<td>1027.0</td>
<td>152.4</td>
<td>65.4</td>
<td>15,735</td>
<td>359.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Bihar includes Jharkhand for some data
*Uttar Pradesh includes Uttaranchal for some data

Calculated and compiled from various official sources
Pre-Reform (1991) Structure

- SEBs (State Electricity Boards) were responsible for power supply
 - Govt. Departments
 - Vertically integrated monopolies
 - Most of the Distribution
 - Much of the Transmission
 - Significant fraction of the Generation
 - Supposed to earn 3% RoR on Asset Base

Source: Dubash (2002)
Indian Power Scenario - Overview

- Installed Capacity ≈ 105,000 MW
 - 1,500 MW in 1950
 - 4th largest in the world (estimate – varies because of captive power)
 - Coal is the predominant fuel
 - Gross generation of 515 billion kWh in 2001-02

- Per capita consumption ≈ 360 kWh
 - World Average ≈ 2,200 kWh

- 90% villages electrified
 - BUT, < 40% of rural houses connected

- 10,000 - 15,000 MW annual growth needed
Not Enough Paying Consumers: Mismatch in Consumption & Tariffs (2001-02)

Consumption ≈ 315 Billion kWh

Prices
239.9 ps/kWh (Average)
≈ 5.00 ¢/kWh

Source: Planning Commission
The Bottom Line

- “Cost of supply” is Rs. 3.50/kWh, realization only Rs. 2.40/kWh
 - Much of the electricity is sold below cost (and some well above cost)
 - Much of it is unaccounted for
 - High T&D losses (~30%) US losses are 8-9% only
 - Technical – 12-15% (?)
 - “Commercial” =Theft – 15-18%

- Utilities are bleeding money
 - Returns calculated as –30 to –40%
 - Losses (excluding $1.5 B subsidy) are approximately $4 billion
Utilities Pay for Politics of Agricultural Tariff

- Agriculture: 30% consumption; < 5% revenues
 - Industry bears the brunt – cross subsidy
 - They move to captive power, hurting the current system more

- Subsidies are growing
 - Not completely covered by tariff increases, government subsidy & cross subsidy

- Irrigation pumps not metered
 - Wasteful consumption
 - Inefficient pumps
 - Illegal connections

- Intermittent & poor quality supply: 6 – 9* hours/day
 - Farmers may be willing to pay for regular & good quality power
The Reforms

Opening up Generation (1991)

- Paralleled overall reforms and liberalization in the economy
 - Triggered by a Balance of Payment Crisis
 - Change of Central Government
- Generation was opened to private participation
 - 8 “Fast Track Projects” were chosen, including Enron’s Dabhol
 - IPPs encouraged through attractive norms
 - PPA-based tariffs (often, no bidding)
 - Main regulation was through CEA (techno-economic clearance)
- Why the focus on generation?
 - Easy to implement (states already had “outside” suppliers)
 - Worldwide trend
 - Players and structure (rise of IPPs)
 - Rise of natural gas combined cycle power plants
- Limited capacity added
 - Private power was much more expensive than SEBs own power
The Reforms (cont.)

- **Structural Changes (mid 1990s)**
 - Establishment of independent Electricity Regulatory Commissions
 - Came, like most changes, under legislative cover
 - Intent to unbundle the SEBs
 - Some states began in the mid nineties; Center reformed in 1998
 - Began even before realization of shortcomings of generation reforms
 - Significant push from Multi-Lateral Agencies

- **Distribution Reforms (APDRP) (2001) Current Thrust**
 - Consensus realization that without fixing distribution, all other reforms will “throw good money after bad”
 - Significant funding available
 - About $1.5 Billions dollars per year - Mix of grant and loan, and some domestic development body funding
 - Combination of carrots and sticks (from Center to States)
PSUs, Government, and ERCs

Source: CERC
Electricity Regulatory Commissions (ERCs)

- Are key to the reforms
 - Set tariffs (bulk supply as well as retail)
 - Separates price-setting from operations
 - Any tariff-driven shortfall must be met through explicit government payments
- Central and State ERCs
 - States’ purview is for all purely in-state transactions
 - Diminishing the role of the CEA to technical approvals
- ERCs are reasonably independent
 - Minimum 55 years age requirement – Commission members often have a govt. background
 - (?) a negative as it perpetuates business-as-usual mentalities
ERCs (cont.)

- Utilities attempt to ignore their orders
 - Often are challenged in court
 - Especially by govt. bodies or SEBs
 - Have won virtually all their cases
- Their Tariff Philosophy remains important
 - Have disallowed large hikes for some classes of consumers
 - Make (sometimes untenable) assumptions
 - E.g. on simultaneity of loads
- Aggressively pushing for loss reduction
Modes of Structural Reform

- Most restructuring is through unbundling and corporatization of the SEBs
 - GenCo
 - TransCo
 - Single Buyer
 - DistCos
 - Based on geography
- End-game is privatization (sequential reform is perhaps politically easier)
- Many models of reform available
 - Reforms do not necessarily mean markets
 - Where would competition come in?
 - Generation (wholesale competition) – limited success
 - No retail competition
 - Auctions for privatizing distribution companies (or other assets)
State Reforms – Three Examples

- Orissa – The Front Runner (1996 Reform Act)
 - Unbundled and then privatized distribution
 - Strong World Bank influence (design and finance)
 - Considered a failure - Consumers and utilities have both suffered
 - Losses (kWh and economic) both increased
 - Many causes of failure
 - Unrealistic assumptions and goals
 - Losses
 - Paying Customers
 - Lack of government support
 - Dampened enthusiasm for reforms, especially privatization
State Reforms (cont.)

- Andhra Pradesh – Seen as one of the most successful reformers (1999 Reform Act)
 - Corporatization only (privatization is some time away)
 - Strong Govt. support
 - Shortfalls are paid by AP Govt. (budget) – paid out to DistCos
 - Some issues with the process
 - ERC allows Transco to charge varying Bulk Supply Tariffs to the 4 DistCos, based on their economic situation
 - Not grounded in economic efficiency
 - Burdens privatization efforts

- Delhi – Innovative - Learning from past mistakes (2000 Act)
 - Distribution was privatized (in 2002) based on loss reduction bids
 - Improvements above targets split between pvt. companies and consumers
 - Indicates importance of **benchmarking** for privatization
 - Transco will receive the subsidy to cover difference
Unbundling – Increases Accounting Transparency

Present (est.)

Future (hypothetical)

Unbundling “forces” profitability – raising costs
What Reforms Don’t Address Directly

An institutional framework for economic success, regardless of ownership/mode, must send correct price signals

- Virtually no time-of-day prices today (generator or consumer)
 - Without a load duration curve, all generators want to operate as much as they can
 - Plant load factor is a dangerous measure of performance
- In-state (SEB) plant is today priced differently
 - Internally see marginal costs vs. Average costs from outside
 - Different regulations (center vs. State ERCs)
- RLDCs vs. Transco – how should dispatch be handled?
 - PPAs as currently being undertaken reduce economic efficiency
 - Long life
 - High offtake requirements
 - No accounting for variable costs
What Reforms Don’t Address Directly/Completely (cont.)

- Use of average numbers masks information about marginal costs – important for efficiency
- Access – not just a supply issue but demand (affordability)
- Agriculture – how can the prices be rationalized?
Issues for Reforms

- Utilities still don’t function like business entities
 - SEBs used for political patronage, social engineering
 - Part of the privatization process included “deals with the devil” over labor security
 - High employee costs, perhaps greater institutional cost
 - Andhra Pradesh has over 65,000 employees for about 6,200 MW
 - Connecticut has just a several thousand employees for similar capacity!

- In a loss-making system, who has first rights to cash flow?
 - Earlier policies favored generators over other segments
 - What of cherry picking for privatization (viable, urban areas)?

- Are there enough players, and does size matter?
Future Reforms

- A Big Bang Approach?
 - Pending Electricity Bill 2001 might alter things drastically
 - Open access philosophy
 - Helps private players and some consumers, might hurt the SEBs/current utilities

- Successful reforms will depend on political will to tackle the hard issues facing the sector
Points for Discussion and Research

- Grid design
 - Signals, stakeholders, and policy
 - ABT – Availability Based Tariff
- IT and innovation
Conventional Wisdom

- One can not do real-time power flow management (transactions and billing) for transmission level flows
 - Today, pools often operate based on historical or aggregated information
- One can not measure demand (usage) from all consumers in real-time with high granularity

What has changed to make these outdated – the growth of IT technology
Idea – use IT for power sector management

- Posit – If new meters are to be installed, why not “smart” digital meters, which are also controllable, and communications-enabled?
 - Incremental costs would be low
- Instead of just quantity of power, can also improve quality of power
- Analysis presented is based on collaborative work with a major utility in India (name withheld for confidentiality reasons)
Quality of Power

- India is focusing on quantity of power only
 - Current “shortfall” numbers are contrived
 - Based only on loadshedding with minor correction for frequency
 - Do no factor in peak clipping fully
 - Do not account for lack of access (e.g., over 60% of rural homes lack connections)
 - Quality norms are often missed
 - Voltage – often deviates by 25+%
 - Frequency – often deviates by 5% (!)
 - Even farmers pay a lot for their bad quality power
 (around 50 p/kWh implicit, even higher in some regions)
 - Use of voltage stabilizing equipment
 - Additional capital costs (in the multiple percent range)
 - Efficiency losses (2-30% lost!)
Actual power quality (voltage profile) for rural feeder in India

Load = 75% Theft = 15%

3 MW Rural Feeder
≈ 10% losses

Source: Bharadwaj and Tongia (2003)
Why a Focus on Distribution?

- It’s where the consumer (and hence, revenue) is
- High losses today
 - Technical losses, 10+ % in rural areas
 - DSM and efficiency measures possible
 - Use of standards required
 - Use a combination of technology, industrial partnership, and regulations
 - Learn from experiences elsewhere
 - Bulk of India's consumption is for just several classes of devices
 - Pumpsets
 - Refrigerators
 - Synchronous motors
US Refrigerator Efficiency Standards

Similar standards can be established for “smart appliances”
Future of Appliances and Home Energy Automation Networks

- Incremental cost of putting networking and processors into appliances approaching a few dollars
 - India has IT strengths and can develop innovations for this sector
 - Could allow time of use and full control (utility benefit/public good/user convenience)
 - Link to a smart distribution system
 - Micro-monitor and Micro-manage every kWh over the network
 - E.g., refrigerators – don’t operate or defrost during peaks (5% of Indian electricity usage)
 - 5% peak management could lead to a 20% cost reduction
 - Italy is already implementing such a system (ENEL)
Objectives and design goals for a new IT-enabled

- Implement a basic infrastructure to...
 - Micro-measure every unit of power across the network
 - Allow real-time information and operating control
 - Devise mechanisms to control the misuse and theft of power through soft control

- Which would...
 - Reduce losses
 - Improve power quality
 - Allow load management
 - Allow system-level optimization for reduced costs
 - Increase consumer utility, satisfaction, and willingness to pay
Additional Benefits

- A system which will offer
 - Outage detection and isolation
 - Remote customer connect & disconnect
 - Theft and tamper detection
 - Real time flows
 - To allow real time pricing
 - Suitability for prepayment schemes
 - Popular in South Africa and elsewhere, where similar problems had been faced
 - Load profiling and forecasting
 - Possible advanced communications and services
 - Information and Internet access
 - Appliance monitoring and control
Network Schematic

~ 20 km

Transmission (~11 kV)

Data Center

Substation

Coupler

Distribution Transformer (pole or ground)

NetCom Device

Coupler

Secondary Distribution Voltage

Users

Quality Assurance Device (Can be off-site outside user control)

Last Few Hundred Meters

(440 or 220 V)

Distribution (11 kV)
Components of the solution

- One segmentation – locational
 - At consumer
 - Meter/GateWay
 - Meter could be pole-side if required
 - In home network
 - Needed connect to enabled devices (appliances)
 - Eventually, homes would also have Decentralized Generation available (?fuel cells, flywheel storage, etc.)
 - Access (low voltage distribution)
 - From gateway to a concentrator, on user side of distribution transformers – Using PowerLine Carrier (PLC)
Solution Components (Cont.)

- Concentrator upwards
 - Concentrator – Each Distribution Transformer (aka Low Voltage Transformer) feeds on the order of 100-200 homes in India (as in Europe). In contrast, US Distribution Transformers feed 5-10 users.
 - Communications medium
 - Over Medium Voltage PLC to the Sub-station
 - or
 - Wireless

- Substation upwards (uplinking)
 - Usually based on leased lines or optical fiber
Technologies for various segments

- **In-Home Network**
 - **Appliances**
 - Emerging Standards are talked about (Maytag, Samsung, GE, etc.)
 - Using Simple Control Protocol (or other appropriate “thin” protocols)

- **Meters**
 - Solid-State meters exist, but not yet the norm in developing countries
 - Most have communications capabilities for external ports
 - Lowest cost solution (if feasible) – PLC – target 5$ incremental cost
Technologies for various segments (cont.)

- **Access**
 - Low Voltage PLC is available today
 - Being explored for Internet access, in fact (Megabits per second)

- **MV**
 - Crossing through transformers remains a technical challenge
 - Going long distances an issue

- **Uplinking**
 - Availability of optical fiber or leased lines can be met through planning
Technologies vs. Capabilities

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Theft Detection</th>
<th>Communications</th>
<th>Control</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromechanical Meter</td>
<td>low (has threshold issues for low usage)</td>
<td>poor</td>
<td>expensive add-on</td>
<td>nil</td>
<td></td>
</tr>
<tr>
<td>Digital (solid state)</td>
<td>high</td>
<td>Node only</td>
<td>external</td>
<td>Limited</td>
<td>Historical usage reads only</td>
</tr>
<tr>
<td>Next Gen. Meter (proposed)</td>
<td>Arbitrarily high</td>
<td>High (network level)</td>
<td>Built-in (on-chip)</td>
<td>Full (connect/disconnect); Extending signaling to appliances</td>
<td>Real-Time control; DSM</td>
</tr>
</tbody>
</table>
Design Model and Business Case

- Only target specific users
 - All agricultural (almost one-third of the load)
 - All Industrial and larger commercial users
 - Only the larger-size domestic users
 - Estimated 2/3 of homes only use <50 kWh per month

- Include every network node that needs monitoring and/or control
 - Substations
 - Transformers
 - Capacitor banks
 - Relays
 - etc.
Design Model and Business Case (cont.)

- Investment in long run only a few thousand rupees per targeted user (Target <75$ capex)
 - When amortized, implies requirement of improvements in system of only a few percent!
 - Savings will come from
 - Lower losses/theft
 - Increased sales possible
 - Lower operational costs
 - Load management
 - Better consumer experience (and hence, possibility for higher tariffs)
 - Future interaction with smart appliance and smart home networks
Economics of case system

- Estimated System
 - (Rural-centric)
 - 62 Consumers (all classes) per Distr. Transformer
 - 98 Distribution Transformers per Sub-Station

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Equipment cost ($)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic (applicable)</td>
<td>200,000</td>
<td>15,000,000</td>
</tr>
<tr>
<td>Commercial</td>
<td>383,000</td>
<td>28,725,000</td>
</tr>
<tr>
<td>Agricultural</td>
<td>673,000</td>
<td>50,475,000</td>
</tr>
<tr>
<td>High-Tension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Transformers</td>
<td>70,306</td>
<td>35,153,000</td>
</tr>
<tr>
<td>Substations</td>
<td>714</td>
<td>3,570,000</td>
</tr>
<tr>
<td>Other IT and infrastructure (capitalized)</td>
<td></td>
<td>10,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>142,923,000</td>
</tr>
<tr>
<td>15% <-annualized rate incl. Amortization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needed Savings</td>
<td>$ 21,438,450</td>
<td>annually</td>
</tr>
<tr>
<td>11,625,000,000 kWh sold annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06 Electricity Rate ($/kWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 697,500,000 Annual Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1% <- Need improvements worth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Economics (cont.)

- 6-7 year payback on investment (conservative) possible with just 3% improvement in system
- Savings will come from
 - Theft Reduction
 - Time-of-Day and DSM measures (peak reduction)
 - System Quality, reliability, and uptime
 - Higher Collection
Challenges

- **Protocols**
 - Use of thin protocols to reduce capex for embedded systems
 - Security – PLC can be a shared medium

- **PLC**
 - How to couple around transformers or other obstacles
 - How to go long runs with low errors (and high enough bandwidth)
 - Shannon’s theorem provides a limit
 - Noisy line conditions in many developing countries

- **Appliances**
 - Need for standards to bring down costs and ensure inter-operability

- **Design** – Should the PLC signals pass through the meter/gateway directly to appliances?
 - How active or passive should consumer behavior modification be?

- **Costs** (as always)
Development strategies

- Standards
- Pilots
- Technology Transfer
- Indigenous R&D
 - Industrial
 - National Labs
 - Academic
- Partnership between these
A New World for Power Systems

- Includes “smarts” for significant improvements in efficiency
- New services can be enabled once the appropriate infrastructure is in place
- Segmentation of development allows independent, modular innovation, e.g., home automation and appliances
- Developing countries (esp. Asia) can lead the way through leap-frogging
Thank You
Unbundling – Where It Can Lead to?

Current Charges
Customer Charge
Generation 432 kWh @ 5.5082¢ 6.38
Transmission 432 kWh @ 0.2483¢ 1.07
Distribution 432 kWh @ 3.0212¢ 13.05
Transition 432 kWh @ 0.0000¢ 0.00
Pennsylvania Tax Adjustment 0.83
Total DLC Basic Service 45.13

My Pittsburgh, Pennsylvania Bill, January 2003

\[
\frac{45.13}{432 \text{ kWh}} = 10.45 \text{ cents/kWh}
\]

But, excluding the Customer Charge, comes to 8.95 c/kWh

Adding the Customer Charge solely into Distribution increases this by almost 1.5 cents/kWh.

This is a rather high bill versus the US average: \(\approx 6.7 \text{ c/kWh (1999)}\) (excluding end-user taxes)

Regional differences – Northeast
Sectoral – Residential pays more than average