Leveraging Historical and Real-time Data to Meet the Challenges of Wind Power Generation
The Primary Challenges

- Asset utilization
 - Availability
 - Efficiency

- Sell power at highest rates
 - Grid integration
 - Forecasting
 - Scheduling
 - Trading

- Warranty management
Other Challenges and Opportunities

- Enterprise integration
 - Heterogeneous assets
- Security
 - NERC CIP
- Regulations and Compliance
 - Reporting
About OSIsoft

- Established in 1980
- Founder - J. Patrick Kennedy
- Private & Profitable
- Headquarters - San Leandro, CA
- 660 + employees
- 225 + employees in product development
- PI Installed base
 - 14,000 + systems (excluding OEMs)
 - 110 + countries
 - 40% of Fortune 1 000 process & manufacturing companies
 - 65% of Global 500 process & manufacturing companies
Primary market segmentation

Asia Pacific: 13%
Europe: 60%
Africa, ME & Eurasia: 27%
Americas: 60%
President of Spain at RED Electrica
12 of Top 15 Owner/Operators use PI*

MW Capacity EOY 2006

- Iberdrola (ES)
- FPL (US)
- Acciona (ES)
- Babcock Brown Windpartner (AUS)
- Scottish Power/PPM (UK)
- Endesa (SP)
- Eurus Energy Holding (JP)
- EDP (Portugal)
- Shell Renewable (NL)
- Essent/Nuon (NL)
- Horizon (US)
- EDF (FR)
- Dong (DK)
- Enel (Italy)
- Vattenfall (S)

Value now, Value over time.
Delivering Value to Wind Customers

- 7200MWs in single WindCORE – going global...
- Centralized M&D Center with Control – coordinated with Grid Operator – RED Electrica

- >5000MWs in Centralized M&D Center
- Distributed Control approach

- Enterprise Customer since 2007
- Developing Operations Center – Bezier, France.
- US Subsidiary – ENXCO – OCC Center - Minnesota

- Enterprise Customer since 2007/08
- Global Integration of NA, European, ME, Asian assets

- Enterprise Customer since 2007
- Distributed control, centralized monitoring & diagnostics
Targeted Industries

- Power & Utilities – 30%
- Oil & Gas – 20%
- Chemicals & Petrochemicals – 10%
- Mines, Metals, Metallurgy & Materials – 10%
- Pulp & Paper – 10%
- Pharma., Food & Life Sciences – 10%
- Data Centers, IT & Facilities (all industries)
Omnipresent Challenges

- Quality
- Personnel
- Variable costs
 - Materials
 - Energy
- Capital utilization
- Trading and markets
- Regulations, compliance
- Environmental, Health, Safety
- Technology
Quick PI System Overview

Value now, Value over time.
Enterprise Architecture

© Copyright 2009, OSIsoft Inc. All rights Reserved.
Basic Connectivity to Turbines

Hardware SCADA

Wind SCADA

OPC Server

Customer Server

PI OPC Client (PI2OPC)

T1 Link

Campbell Logger

OSI Campbell SCIENTIFIC Loggernet

PI DATABASE
Customer Architecture--Iberdrola

DOMINA SYSTEM

- Production Management Server
- SAP Maintenance Management Server

INTERNET

FIREWALL

INTRANET

CORPORATE NETWORK

ROUTER

INTERNET

WAN

WIND FARM

Local Control System

Corporate Network Access System

WIND FARM B

Local Control System

Corporate Network Access System

IBERDROLA RENEWABLE ENERGY O&M CENTER

- Retro projection screen
- iBerinco Historical SCADA + PI System

SCADA #1

HDB #2

SCADA #2

HDB #1

CENTRAL OPERATION CENTER NETWORK

CORPORATE NETWORK

ROUTE

ROUTE

ROUTE

ROUTE

Central Operation Center Network
Challenge--Asset Utilization

- **Availability**
 - Is asset online?

- **Efficiency**
 - Is it performing to expected levels?
What is Availability Worth?

<table>
<thead>
<tr>
<th>Hours</th>
<th>TurbineClass (kW)</th>
<th>Capacity Factor</th>
<th>Availability</th>
<th>Annual Expected Output (kWh)*</th>
<th>Busbar Price /kWh</th>
<th>Annual Cash Flow per WTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8760</td>
<td>600</td>
<td>33%</td>
<td>100%</td>
<td>1,734,480</td>
<td>0.0425</td>
<td>$ 73,715.40</td>
</tr>
<tr>
<td>8760</td>
<td>1000</td>
<td>33%</td>
<td>100%</td>
<td>2,890,800</td>
<td>0.0425</td>
<td>$ 122,859.00</td>
</tr>
<tr>
<td>8760</td>
<td>1500</td>
<td>33%</td>
<td>100%</td>
<td>4,336,200</td>
<td>0.0425</td>
<td>$ 184,288.50</td>
</tr>
<tr>
<td>8760</td>
<td>2000</td>
<td>33%</td>
<td>100%</td>
<td>5,781,600</td>
<td>0.0425</td>
<td>$ 245,718.00</td>
</tr>
<tr>
<td>8760</td>
<td>2500</td>
<td>33%</td>
<td>100%</td>
<td>7,227,000</td>
<td>0.0425</td>
<td>$ 307,147.50</td>
</tr>
<tr>
<td>8760</td>
<td>5000</td>
<td>33%</td>
<td>100%</td>
<td>14,454,000</td>
<td>0.0425</td>
<td>$ 614,295.00</td>
</tr>
</tbody>
</table>

*Formula = Hours * Generator Capacity * Capacity Factor * Availability*

- A typical utility scale wind farm may have 30 to 200 Turbines
- Large owners (e.g. Iberdrola – 3500MWs) may have thousands of turbines
- A single percentage point gain/loss of “in-market” availability (e.g. turbines available to operate when the wind is blowing) for
 - Iberdrola **Total Fleet** would result
 - in a 1st Year ROI/loss of **$4.3MUSD**.
 - NPV over 5 Years = **$13.5MUSD** @ 18% Discount Rate
 - Based on US prices, power rate in Spain is .07 to .10/kWh produced
- For a **Single Wind Farm of 150MWs:**
 - In a 1st year ROI of $185,000
 - NPV over 5 years = **$576,000** @ 18% Discount Rate

© Copyright 2009, OSIsoft Inc. All rights Reserved.
Cost reduction in O&M
- By centralizing operation, resource optimization is achieved with a significant reduction of local staff

Reduction of unavailability costs
- Continuous monitoring and remote operation of wind farms
- Remote pre-diagnosis and activation of local maintenance squads for the solution of failures

Implementation of energy control functions
- To meet new grid operation requirements based on high penetration rate of wind energy...

Centralized way to communicate with other energy management centres
Iberdrola WindCORE

- Alarm Warnings and Events
- Advanced Alarm Manager (Multimedia and Squad Manager)
- Historic Data Storage
- Historic Reports
- Calculation
- Reports
Benefit Received

<table>
<thead>
<tr>
<th>MW</th>
<th>Capacity Factor</th>
<th>Availability</th>
<th>MWh Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>27.5%</td>
<td>97%</td>
<td>4673460</td>
</tr>
<tr>
<td>2000</td>
<td>27.5%</td>
<td>98%</td>
<td>4721640</td>
</tr>
</tbody>
</table>

48180 MWh Gain from Availability Improvement

Feed In Tariff USD/MWh:

| | $80,00 | $3.854.400,00 |

Cost Model for WindCORE

- **Total cost**
 - Year 1: $2.100.000
 - Year 2: $600.000
 - Year 3: $600.000
 - Year 4: $600.000
 - Year 5: $600.000

- **Net Present Value of Cost**: $3.638.108
- **Benefit**
 - Year 1: $3.854.400
 - Year 2: $3.854.400
 - Year 3: $3.854.400
 - Year 4: $3.854.400
 - Year 5: $3.854.400

- **Net Present Value of Benefit**: $14.611.209
- **Payout per Dollar Spent**: $4.02

Cost Assumptions: Number of Wind Farms
Availability--Common Component Failures

- Gearbox
- Blades
- Drive train
Event Search Results

Gearbox Example

Value now, Value over time.
Gearbox Example

Value now, Value over time.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Hours Lost</th>
<th>Production Lost</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5/04</td>
<td>19:15</td>
<td>11.90</td>
<td>6,627</td>
<td>Gen Temp High</td>
</tr>
<tr>
<td>5/9/04</td>
<td>20:29</td>
<td>11.93</td>
<td>7,200</td>
<td>Gen Temp High</td>
</tr>
<tr>
<td>5/16/04</td>
<td>18:25</td>
<td>17.32</td>
<td>10,297</td>
<td>Gen Temp High</td>
</tr>
<tr>
<td>6/29/04</td>
<td>16:14</td>
<td>382.57</td>
<td>157,665</td>
<td>Generator R&R, Gen Alignment</td>
</tr>
<tr>
<td>7/16/04</td>
<td>6:43</td>
<td>1.05</td>
<td>700</td>
<td>Nacelle Reassembly after R&R Gen</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>424.77</td>
<td>182,489</td>
<td>$10,024 lost revenue from 1 turbine over 2 month period</td>
</tr>
</tbody>
</table>

Value now, Value over time.
Gearbox Example

Value now, Value over time.
Next examples are by one of our Engineers

• Done on real customers systems
• Example of getting visibility into what is going on
Turbine Power Curve Analysis

- Turbine: WTG 01
- Start Time: 4/1/2008
- End Time: 4/2/2008
- Average Output: 100.60 kW
- Avg. Exp. Output: 943.22 kW
- Average Offset: -842.61 kW
- Daily Production (kWh): 4658
- Expected Daily Production: 9952
- Daily Revenues: $419.22
- Expected Daily Revenues: $895.70
- Over/Under Production Cost: -$476.49

Expected/Actual Power

Power Offset/Wind Speed

© Copyright 2009, OSIsoft Inc. All rights Reserved.

Value now, Value over time.
Customer—PPM (owned by Iberdrola)

OSIsoft Users Conference, 2007

Uses PI to:

- Manage Fuel
- Deal with many units and wide geographic distribution; often remote locations.
- Normalizes data from several turbine Manufacturers
- Deal with Complexity of markets
Reliability vs. Availability

Park Reliability & Availability Month-to-Date

<table>
<thead>
<tr>
<th></th>
<th>As Of: 2007-04-12 11:00:00</th>
<th>Next Execution: 20 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELI</td>
<td>Klondike 1</td>
<td>Klondike 2</td>
</tr>
<tr>
<td></td>
<td>89.54 %</td>
<td>95.31 %</td>
</tr>
<tr>
<td></td>
<td>78.04 %</td>
<td>84.21 %</td>
</tr>
<tr>
<td>AVAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELI</td>
<td>Shiloh</td>
<td>Highwinds</td>
</tr>
<tr>
<td></td>
<td>99.07 %</td>
<td>88.91 %</td>
</tr>
<tr>
<td></td>
<td>96.79 %</td>
<td>91.73 %</td>
</tr>
<tr>
<td>AVAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELI</td>
<td>Col Green</td>
<td>Elk River</td>
</tr>
<tr>
<td></td>
<td>98.01 %</td>
<td>98.71 %</td>
</tr>
<tr>
<td></td>
<td>91.88 %</td>
<td>92.88 %</td>
</tr>
<tr>
<td>AVAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELI</td>
<td>MapleRidge 1</td>
<td>MapleRidge 2</td>
</tr>
<tr>
<td></td>
<td>92.61 %</td>
<td>89.86 %</td>
</tr>
<tr>
<td></td>
<td>89.72 %</td>
<td>89.33 %</td>
</tr>
</tbody>
</table>
PPM (Now Iberdrola)

Wind Portfolio
Wind Gen Total 425

Value now, Value over time.
PPM—Scotty Gilbert

- 14 day forecasts; about best at this time
- 24 hour forecasts—climatology and park data
 - They bank on this—trading is done 24 hours in advance.
 - Supply vs. buy decisions
PPM—Scotty Gilbert

- At end of day reconcile reality with forecast
 - Did you get the fuel predicted?
 - Did you convert to power as predicted?
- Evaluate Market exposure
 - Were assumptions true?
- Imperative to go back and understand and improve.
Scotty Gilbert’s words of wisdom

- Collect all the information
 - True production vs. predicted
 - Evaluate reasons
 - Evaluate where to invest to improve
 - Answer questions in real time.
 - Don’t take weeks to answer the CEO’s questions
- “Have the courage use the historical data to evaluate performance”
Importance of Forecasting

- ERCOT
- Bonneville Power Authority
- UWIG--AWEA
Ramp Event Caught By ERCOT

Ramping Example 1 cont.

Aggregated Wind Output - Evening of July 8th, 2008

Value now, Value over time.
Balancing—Bonneville Power Authority

1,500 MW Balancing Area

19 Wind Farms

© Copyright 2009, OSIsoft Inc. All rights Reserved.
Value of Forecasting

GE-NYSERDA Study for NYISO, 10% Penetration, 2005
Operating Costs with Wind Forecasts

- Day-ahead unit commitment considers forecasted wind generation

<table>
<thead>
<tr>
<th></th>
<th>No Wind Forecast</th>
<th>SOA Wind Forecast</th>
<th>Perfect Wind Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Variable Cost Reduction</td>
<td>$335 M</td>
<td>$430 M</td>
<td>$455 M</td>
</tr>
<tr>
<td>Net Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Generation</td>
<td></td>
<td>$95 M</td>
<td>$120 M</td>
</tr>
<tr>
<td>Value of Forecast</td>
<td></td>
<td>$10.70/MWH</td>
<td>$13.50/MWH</td>
</tr>
</tbody>
</table>

8900 GWH

Presented by GE at UWIG Sacramento Meeting, Nov. 2005

© Copyright 2009, OSIsoft Inc. All rights Reserved.
Keys—

• Best 1 hour prediction is current conditions.
• Schedule maintenance when wind is likely to be down.
• Real-time data to make better maintenance decisions
 • Final maintenance planning done based on current and immediate forecast
Send to regulators production plan

- Hour to two hours in advance
 - Failure to deliver requires purchasing power
- Forecasting services
 - Feed them your wind data
 - Their models forecast the next few hours
 - Calculate output potential
- Use PI to track forecast accuracy
Based on availability
 • (Often part of O & M contract)
Non-competitive during boom of last few years
 • Owner now has opportunity of doing O & M on day 1
Close monitoring of guaranteed asset provides key knowledge to transition into post warranty mode.
Warranty Management

- Manufacturers provide warranty based on availability
- Availability is natively only found in their SCADA
- PI Acts as the “Fox Watching the Hens”
Resources

- T&D Users Group—fall
Questions? Or can dig into products.
Product Overview
What is PI?

- System that
 - Connects & Collects (streaming data, events, strings, etc.)
 - Archives & Manages (long time at resolution of acquisition)
 - Processes (calculates, aggregates, analytics)
 - Visualizes (thick, thin, portal, web, etc.)
 - Contextualizes (metadata, structure, etc.)
 -Alerts and Notifies (alarm, notifications, messages, etc.)

- Real Time Data & Events
Connect
Collect data from hundreds of sources.

Manage
Gather and archive large volumes of data. Scale to meet your growing business needs.

Analyze
Access real-time or historical role-based data for the entire enterprise at any time.

Present
View data, identify problems, and take corrective action with familiar, easy-to-use graphical tools.

Interfaces

Servers

Analytics

Visuals
The PI System® connects to real-time and event data every second, every minute, every day, and archives it indefinitely.

- Measure and interpret a variety of data
- Both time-series and event data
- Secure access
- From virtually anywhere and any source
- Using time intervals and sampling rates customized to your business needs

Connect to over 400 data systems and sources out of the box.
The center of the your real-time data infrastructure.

- Highly-available
- Secure
- Accessible
- Reliable
- Mission-critical, role-based information to make informed decisions

Ensure that everyone has the same information.
The standardized system provides— “one version of the truth.”
The PI System: Manage

PI Data Services
- PI Data Access (PI SDK)
- Relational Data (OLEDB)
- Web Service Data
- Managed Provider

PI Archive
AF Server
- SQL Server

Connect (Interfaces)
Analyze (Analytics)
Present (Visuals)

Manage (Servers)

Value now, Value over time.
Convert real-time data into actionable information (post processing)
 • Equations, calculations and business rules
 • Reports
 • Batch reports
 • Notifications and Alerts

Measure and improve business performance.
The PI System: Analyze

- Connect (Interfaces)
- Manage (Servers)
- Present (Visuals)

Analyze (Analytics)

- PI Advanced Computing Engine
- RtReports
- PI Notifications
- Sigmafine
- PI Analytics (new PE, Alarm, and RTSQC engine)
PI System® Visuals are a configurable suite of intuitive, easy-to-use graphical tools that simplify decision-making.

Decision makers can use familiar desktop tools such as:
- OSIsoft’s PI ProcessBook
- Microsoft Office Excel or Microsoft Office SharePoint Server
- SAP Enterprise Portal

Empower informed decisions and drive business success.
The PI System: Present

Connect (Interfaces) Manage (Servers) Analyze (Analytics) Present (Visuals)

Desktop
- ProcessBook
- DataLink
- DataLink Excel Services
- Manual Logger

Web
- Rt WebParts
- ActiveView
- RtPM Business Package
The PI System: Architecture
The PI System: Architecture

Value now, Value over time.
The PI System: Architecture
Value now, Value over time.
PI System - Simple System

Process Control Secure LAN

Manual Data SCADA/DCS PLC / Instrument Systems LIMS Systems

PI PI API

Value now, Value over time.
Value now, Value over time.
How PI delivers value...

- Application and industry “Agnostic”
- Value out of the box
- “Fits in place”
- Scalable
 - Small, through medium to large and very large system
 - Simple to complex systems
 - Slow to high fidelity in the data rate (events per second),
 - Low to high intensity of pre and post processing (analytics)
- Preserves operational knowledge of an enterprise
- Enhances the capability of scarce workers
- Reliable and low maintenance by the user (striving to remain)
- Manages both the real time data and its data communications infrastructure - convergence
What is tangible value for Customers?

- Avoided $150 Million in Capital Spending to meet Environmental legislation
- Reduced maintenance costs by 3% and lowered systems management costs by a 3 to 2 ratio
- Saved $20 million in Energy Costs
- Eliminated $12 million in annual recurring energy costs
- Saved $5 per ton in Maintenance costs in Paper Mill operations
What is tangible value for Customers?

- $2.4 million savings in just one chemical plant, in production and maintenance
- Improved controlling over operations gains 41% return in 3.5 years (OEE, KPI’s)
- $1M Reduction of Electricity Costs in First Year
- $5 million benefits from capture of KPI’s and related performance data from operating facilities
- Increased diesel yield earned an $1 million increase in profitability
- Saved over $500,000 in one mill by using PI for real time costing and decision support for operators