Why Carbon Offset Policy Matters for Electric Companies

Delavane Diaz
EPRI Global Climate Change
Today’s Topics

- Pop Quiz – US climate policy
- Offset provisions in Waxman-Markey
- Electric system modeling approach
- Policy impacts on electric generators
- Concluding thoughts and discussion

Thank you to Vic Niemeyer and Tom Wilson for ideas and slides
Let’s Play Jeopardy!

Category:

ESTIMATED COST OF CLIMATE POLICY
What were the public estimates of the cost of Lieberman-Warner as it went to the Senate floor in 2008?
Let’s Play Jeopardy!

Category:

CONGRESSIONAL INTERPRETATION OF COST ESTIMATES
What single cost estimate was quoted by a leading senator as the bill was debated?
How Do You Make Sense of this Diversity of Results?

- In May 2008, EPRI held a Capitol Hill workshop to understand cost estimates of Lieberman-Warner
 - 6 modeling teams (EIA, ACCF, CATF, EPA, MIT, CRAI) + CBO
 - Differences due primarily to different baselines (AEO) and different electric sector technology cost and deployment assumptions

Legislative Proposals in 2009 Are Similar, But Also Fundamental Differences from 2008

• Time horizon the same
• Emission targets roughly the same
• Emissions included roughly the same
• Gases covered roughly the same
• So what is so different between Waxman-Markey & Lieberman-Warner?
2009 House-passed Climate Bill Set Stringent Target but Generous Offset Provisions Could Loosen the Cap

Emission Reductions Under an "80% by 2050" Cap-and-Trade Program

- Allowed emissions with full offsets
- BAU for capped sectors
- Potential compliance path
- Waxman-Markey Cap
What are Greenhouse Gas Offsets?

Offsets are project-based GHG reductions in sectors or regions outside a cap-and-trade program.

- A coal mine methane destruction facility
- Corn fields in MI (part of EPRI’s N₂O offsets project)
- Wind farms in China can generate CDM offsets
- Avoiding deforestation can generate REDD credits
Emission Offsets Offer Promise ... But There are Significant Implementation Challenges & Risks

• Unprecedented limits in US legislation
 – Recent bills allowed 2B offsets per year
 – CDM has issued < 1/5th of this to date

• International Offsets – large potential, but hard to implement
 – Offsets issued by an international body (e.g., CDM)
 – Reduced Emissions from Deforestation and Degradation (REDD)
 – Sectoral offsets

• Domestic offsets – relatively small potential
 – EPA estimates ~170MtCO₂/yr through 2020
 – Mostly forest management & afforestation
 – Protocols & methodologies will take time to develop
Lowest Cost Emission Reductions Will Come From Offsets and the Electric Sector

Compliance Sources in 2009 EIA Analysis of Waxman-Markey

Emissions (MtCO2e)

- Electric sector reductions
- Non-electric reductions
- Offsets, international
- Offsets, domestic forestry & ag

Source: EIA NEMS runs, HR2454 Cap, HR2454 No Int Offsets
Two Possible CO₂ Price Paths Represent Alternative Assumptions about Offset Availability

EIA Allowance Price Estimates for Waxman-Markey

Offset supply will fundamentally affect the cost for an electric company to comply with US climate policy

Source: EIA NEMS runs, HR2454 Cap, No Int Offsets, No Int Offsets/Lim, High Cost, High Offsets
Model Assesses the Potential Risk and Opportunity from CO$_2$ Targets on the Electric Sector

Model adds/retires capacity based on value of generating asset relative to fuel prices, CO$_2$ targets, load growth, and costs for new capacity

Combines 3 CO$_2$ reduction activities in cost-minimizing mix
1. Redispatch existing capacity (short-term)
 → Substitute gas-fired plants for coal-fired plants
2. Replace old with new (long-term)
 → Displace existing fossil with new / retrofit low-emitting generation
3. Add new capacity (long-term)
 → Select low-emitting alternatives for capacity additions

Framework provides an analytically consistent approach for evaluating economics of generation over annual operating cycles over time as
• CO$_2$ targets evolve,
• fuel prices change, and
• the generation mix shifts to reflect new economic incentives / drivers & the availability of advanced generation technologies
Regional Market Analysis Overview

• Models regional generation investment, operation, emissions, fuel use, and daily peak and off-peak power prices from 2007 to 2030
 – Calibrated to 2007 publicly available data on generation and market prices
• Captures full electric sector detail at the unit-level
 – Characterizes every power plant in a regional market
• Simulates annual operations by matching load shapes; result is comprehensive simulation of generation technology deployment, use and value in a competitive market
 – Does not incorporate detailed system constraints on operations, transmission or new investment
 – Reflects lead times to build new capacity
 – Includes role of customer load response to higher power prices (and interaction over time with needs for new generation)
 – Range of CO2 price scenarios starting in 2012 reveal impact on electric sector and dynamics of its response over time
• Reference case realistic point of reference but not a forecast
• Uncertainty surrounds gas prices, construction costs, technology constraints, demand response, etc. which drive specific results
• Focused on electric sector response only — does not assume any cost-mitigating impact of low-cost emission offsets

Supply Stack Chart Shows Marginal Cost Curve for Economic Dispatch

Illustrative Example

Units with low operating costs (hydro/renewables, nuclear, & coal) are the first to dispatch, and run most of the hours of the year.

Highest cost gas & oil units run fewer hours of the year.

Source: EPRI Regional Stack Model
© 2009 Electric Power Research Institute, Inc. All rights reserved.
Load Duration Curve Determines How Many Hours in the Year Each Unit Runs

Illustrative Example

Cumulative Regional Capacity (MW)

Hours of Operation

Dispatch Price ($/MWh)

- Gas
- Coal
- Nuclear
- Renewables
- Biomass

Source: EPRI Regional Stack Model
© 2009 Electric Power Research Institute, Inc. All rights reserved.
CO₂ Price Increases Dispatch Costs — Supply Stack Re-orders to Favor Less Emitting Generation

Midwest Regional Supply Stack in 2012
(Gas at $6.82/MMBTU)

Source: EPRI Regional Stack Model
Given a Portfolio of Generation Technologies, CO₂ Policy Guides Electric System Choices

Midwest Region Electricity Supply by Source

$20 CO₂ Case

+$5%/yr

Source: EPRI Regional Stack Model, Midwest ISO results

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Companies Can Comply With Modest Abatement and Allowances at $20/tCO₂

- **Policy takes effect 2012**
- **BAU “no policy” emissions reference**
- **5% biomass co-firing**
- **2% heat rate improvements**
- **Avoided emissions from dispatch lost under $20/ton policy**
- **Actual emissions after abatement**

Emissions covered with allowances or offsets

- **Biomass co-fire reductions**
- **Heat rate improvements**
- **Lost dispatch (reduced operation)**
- **Allowance market & offset credit purchase**
- **Actual emissions**

Source: Midwest ISO and illustrative electric company results

© 2009 Electric Power Research Institute, Inc. All rights reserved.
$50 CO₂ Adder Transforms the Generation System — Existing Coal is No Longer Competitive

Native load met by purchasing power or adding capacity

Source: Midwest ISO and illustrative electric company results
Policy Insights for Electric Company Strategy

• CO₂ price expectations guide electric sector investments
 – $20 and $50/tCO₂ paths could present dramatically different futures
• Key drivers of CO₂ prices becoming clear
 – Ultimate supply of offsets (quantity, timing, cost)
 – If offsets scarce, cost and availability of low-emitting generation
• Offset potential hinges on governments and institutions

• Recent offset provisions in Congress make international policy a domestic compliance issue
 – With limited offsets, electric sector reductions (once again) drive costs
Delavane Diaz
Project Manager
Global Climate Change Program
Electric Power Research Institute
3420 Hillview Avenue
Palo Alto, CA 94304
ddiaz@epri.com