Storing Electricity
Technology in a UK/EU Context

Dr Tim Fox CEng CEnv FIMechE FRSA
Head of Energy and Environment
Institution of Mechanical Engineers
@TimFox_IMechE
Fully engaged in public debate
Talk overview

- Energy landscape and policy context
- Overview for storage
- Policy needs
- Energiewende
- Conclusions
UK energy landscape

• Stable demand profile for past three decades
• Need to replace ageing plant and infrastructure
• North Sea gas depleting (by 2020, 80% of gas demand will need to be met through imports)
• Increasing global competition for limited primary energy resources, particularly oil and gas
• Decarbonisation aspirations and obligations (targets)
Supply and demand

• UK primary energy sources
 - Oil: 45%
 - Gas: 32%
 - Electricity (nuclear, wind, hydro): 19%
 - Coal: 1.5%
 - Other renewables: 2.5%

• UK energy consumption
 - Transport: 39%
 - Domestic: 30%
 - Industry: 18.5%
 - Services: 12.5%
 - Heat 49%, Electricity 20%, Transport 31%
UK Energy policy

Sustainability
- EU 20 / 20 /20 targets
- Climate Change Act 2008
- Increased renewables
- Decarbonisation of electricity
- Decarbonisation of other sectors
- Increased use of electricity as a clean energy vector
- Energy conservation
- Energy efficiency
- Distributed generation

Economy
- Open markets deliver competitive prices
- Interconnections link markets
- Avoid price uncertainty for consumers
- Political intervention and regulation to protect consumers
- Community and domestic stakeholder participation in ownership, production and trading
- Asset optimisation

Security of supply
- Licence conditions provide requirements for supply
- Invest in storage
- Ensure sufficient peak capacity (Winter)
- Maintain margin with adequate reserves
- Increase renewables and nuclear to reduce reliance on imported gas and other fuels
- Develop system flexibility and community level resilience
- Adopt smart grids
Future generation mix

Generation under ‘Gone Green’ scenario
Source: National Grid
Renewables and power system

- Large scale and small scale
- Variability and location
- Surplus and shortfall
- Short and long term reserves
- Markets/subsidies
UK power network

Today’s network

• Large scale competitive generation, regulated transmission and distribution
• Limited embedded generation (at distribution level)
• Wholesale market supplies retail customers
• Limited number of self suppliers
• System planned to meet peak demand plus reserves – spare (or under utilised assets)
• Low level of interconnections to other networks
• Regulated wires businesses
• Facing substantial change

The future

• Significant shift from dispatchable generation to time variable generation
• Peaky demands from digital society, switch to heat pumps, uncertain effect of electric vehicles
• Distributed community and domestic level generation and trading
• Average and peak domestic demand likely to increase
• Balancing the system requires more flexibility
• Higher level on continental interconnection
Tools for system balancing

Flexible generation (reserve)

Storage (absorbs and rejects power)

Demand response

Connectors (import or export)
Storage – enabling technology

• Intermittent renewable energy sources
 ▪ ‘Wrong time’ electricity generation – too much or too little
 ▪ Optimises return on investment (ROI) in renewables plant
 ▪ Reduces need for idle spare capacity (reduces investment costs in asset base) and avoids (volatile) fuel costs

• Large base-load electricity generation
 ▪ Sweats assets for improved ROI – e.g nuclear and biomass

• Flexibility of scale and location
 ▪ Mix of storage technologies analogous to generation mix
 ▪ Defers network investments and lowers system costs
 ▪ Reduces SMART grid and interconnection risks
Enablers - storage

- Pumped hydro
- Compressed-air
- Power to gas
- Flywheels
- Thermo processes
- Batteries
- Stockpiling
Storage application matrix

Application scales and potential users

<table>
<thead>
<tr>
<th></th>
<th>Small Under 1 MW</th>
<th>Medium 1–10 MW</th>
<th>Large 10 MW–100 MW</th>
<th>Very large 100 MW +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power producers</td>
<td>Standalone systems for self-generation and renewables</td>
<td>Energy trading</td>
<td>Supply of ancillary services</td>
<td>Network constraint management</td>
</tr>
<tr>
<td>Network operators</td>
<td>Deferral of network reinforcement</td>
<td>Local network management</td>
<td>Deferral of system reinforcement</td>
<td>Peak shaving</td>
</tr>
<tr>
<td>Consumers of power</td>
<td>Small commercial, domestic users for local load management and tariff reduction</td>
<td>Local load management, smart grid support and external ancillary services</td>
<td>Peak shaving for energy cost reduction and ancillary services</td>
<td>Peak shaving for energy cost reduction</td>
</tr>
</tbody>
</table>
Barriers and challenges

• Classification of storage solutions
 - Electricity “consumer” and electricity “generator”

• Electricity market structure
 - Competitive generation and highly regulated transmission and distribution – disincentive for investment
 - Lack of income certainty increases financial risk - need to be allowed to access multiple income streams
 - No clear business model

• Government policy
 - No current UK Government policy for widespread deployment/adoption of storage capability
Policy needs

• Recognise the value of storage
 ▪ Strongly dependent on network generating mix and local market rules

• Separate classification for storage
 ▪ Recognise unique roll as both ‘consumer’ and ‘provider’

• Create competitive incentivised environment
 ▪ Needs to ensure inclusion and access to multiple streams

• Support demonstration at commercial scale
Germany’s Energiewende

- Biggest renewable transition experiment in the world
 - Legally binding (Renewable Energy Act 2000) with cross-party support and strengthened by recent no nuclear policy
 - Nuclear provided 25% primary power in 2011 when 8 stations were closed with immediate effect, remaining 9 by 2022
 - Total power generation capacity 155GW
 - Aspiration is 35% of electricity generation from renewable sources by 2035, 80% by 2050 (2012 figure was 20%)
Energiewende plan

• Transition
 - 45% to be achieved by demand reduction and increase in imports
 - Plan a 42GW connection with Norway
 - Focus is wind and solar resources

• Issues
 - Dumping of power on neighbours (Poland and Czech)
 - 2011 experienced 200,000 blackouts of more than 3 mins
Energy storage focus

• Current
 - Pump storage (30 sites in operation; 7.6GW, 4.9% total power generation) but few available for future

• Future
 - Government spending €200 million in period 2011-2014 on energy storage R&D
 - Focus is on power-to-gas capability (methane, hydrogen)
 - 250 kW pilot plant in Stuttgart largest in world; €3.5 million
 - Methane from water and CO₂ (50% efficient)
 - CO₂ from sewage and agricultural sludge
 - Early stage in thinking about energy storage potential
UK conclusions

• Support action to identify true system benefit of electricity storage

• Develop policy frameworks that reward value of electricity storage in UK power markets

• Encourage/support UK companies and research organisations that are developing storage technologies
Thank you